
Connexions module: m27733 1

Computer Systems
∗

Huong Nguyen

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

A computer is an electronic device that performs calculations on data, presenting the results to humans
or other computers in a variety of (hopefully useful) ways. The computer system includes not only the
hardware, but also software that are necessary to make the computer function.

Computer hardware is the physical part of a computer, including the digital circuitry, as distinguished
from the computer software that executes within the hardware.

Computer software is a general term used to describe a collection of computer programs, procedures and
documentation that perform some task on a computer system

1 Computer Organization

1.1 General Model of a Computer

A computer performs basically �ve major operations or functions irrespective of their size and make.
1. Input: This is the process of entering data and programs in to the computer system. You should

know that computer is an electronic machine like any other machine which takes as inputs raw data and
performs some processing giving out processed data. Therefore, the input unit takes data from us to the
computer in an organized manner for processing.

2. Storage: The process of saving data and instructions permanently is known as storage. Data has
to be fed into the system before the actual processing starts. It is because the processing speed of Central
Processing Unit (CPU) is so fast that the data has to be provided to CPU with the same speed. Therefore
the data is �rst stored in the storage unit for faster access and processing. This storage unit or the primary
storage of the computer system is designed to do the above functionality. It provides space for storing data
and instructions.

The storage unit performs the following major functions:
- All data and instructions are stored here before and after processing.
- Intermediate results of processing are also stored here.
3. Processing: The task of performing operations like arithmetic and logical operations is called

processing. The Central Processing Unit (CPU) takes data and instructions from the storage unit and
makes all sorts of calculations based on the instructions given and the type of data provided. It is then sent
back to the storage unit.

4. Output: This is the process of producing results from the data for getting useful information.
Similarly the output produced by the computer after processing must also be kept somewhere inside the
computer before being given to you in human readable form. Again the output is also stored inside the
computer for further processing.

∗Version 1.1: Jul 7, 2009 6:05 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 2

5. Control: The manner how instructions are executed and the above operations are performed.
Controlling of all operations like input, processing and output are performed by control unit. It takes
care of step by step processing of all operations in side the computer.

In order to carry out the operations mentioned above, the computer allocates the task between its various
functional units. The computer system is divided into several units for its operation.

• CPU (central processing unit) : The place where decisions are made, computations are performed, and
input/output requests are delegated

• Memory: stores information being processed by the CPU
• Input devices : allows people to supply information to computers
• Output devices : allows people to receive information from computers
• Buses : a bus is a subsystem that transfers data or power between computer components inside a

computer.

Figure 1: General model of a computer

The basic function of a computer is program execution. When a program is running the executable binary �le
is copied from the disk drive into memory. The process of program execution is the retrieval of instructions
and data from memory, and the execution of the various operations.The cycles with complex instruction sets
typically utilize the following stages :

Fetch the instruction from main memory
The CPU presents the value of the program counter (PC) on the address bus. The CPU then fetches

the instruction from main memory via the data bus into the Memory Data Register (MDR). The value from
the MDR is then placed into the Current Instruction Register (CIR), a circuit that holds the instruction so
that it can be decoded and executed.

Decode the instruction
The instruction decoder interprets and implements the instruction.
Fetch data from main memory

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 3

Read the e�ective address from main memory if the instruction has an indirect address. Fetch required
data from main memory to be processed and placed into registers.

Execute the instruction
From the instruction register, the data forming the instruction is decoded by the control unit. It then

passes the decoded information as a sequence of control signals to the relevant function units of the CPU to
perform the actions required by the instruction such as reading values from registers, passing them to the
Arithmetic logic unit (ALU) to calculate the result and writing the result back to a register. A condition
signal is sent back to the control unit by the ALU if it is involved.

Store results
The result generated by the operation is stored in the main memory, or sent to an output device. Based

on the condition feedback from the ALU, the PC is either incremented to address the next instruction or
updated to a di�erent address where the next instruction will be fetched. The cycle is then repeated.

1.2 The Central Processing Unit (CPU)

You may call CPU as the brain of any computer system. It is the brain that takes all major decisions, makes
all sorts of calculations and directs di�erent parts of the computer functions by activating and controlling
the operations.

CPU has four key parts

• Control Unit
• Arithmetic & Logic Unit
• Registers
• Clock

And, of course, wires that connect everything together.

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 4

Figure 2: Basic Model of the Central Processing Unit (CPU)

Arithmetic Logic Units (ALU)
The ALU, as its name implies, is that portion of the CPU hardware which performs the arithmetic and

logical operations on the binary data .The ALU contains an Adder which is capable of combining the contents
of two registers in accordance with the logic of binary arithmetic.

Control Unit
The control unit, which extracts instructions from memory and decodes and executes them, calling on

the ALU when necessary.
Registers
Registers are temporary storage units within the CPU. Some registers, such as the program counter and

instruction register, have dedicated uses. Other registers, such as the accumulator, are for more general
purpose use.

Clock
A circuit in a processor that generates a regular sequence of electronic pulses used to synchronize oper-

ations of the processor's components. The time between pulses is the cycle time and the number of pulses
per second is the clock rate (or frequency).

The execution times of instructions on a computer are usually measured by a number of clock cycles
rather than seconds. The higher clock rate, the quicker speed of instruction processing. The clock rate for
a Pentium 4 processor is about 2.0, 2.2 GHz or higher

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 5

1.3 Memory

Memory refer to computer components, devices and recording media that retain digital data used for com-
puting for some interval of time. Computer memory includes internal and external memory.

Internal memory
The internal memory is accessible by a processor without the use of the computer input-output channels.It

usually includes several types of storage, such as main storage, cache memory, and special registers, all of
which can be directly accessed by the processor.

Cache memory : A bu�er, smaller and faster than main storage, used to hold a copy of instructions
and data in main storage that are likely to be needed next by the processor and that have been obtained
automatically from main storage.

Main memory (Main Storage) : addressable storage from which instructions and other data may be
loaded directly into registers for subsequent execution or processing.

Storage capacity of the main memory is the total amount of stored information that the memory can
hold. It is expressed as a quantity of bits or bytes. Each address identi�es a word of storage. So the capacity
of the main memory depends on the number of bits allowed to address. For instance, a computer allows
also 32-bit memory addresses; a byte-addressable 32-bit computer can address 232 = 4,294,967,296 bytes of
memory, or 4 gigabytes (GB). The capacity of the main memory is 4 GB.

The main memory consists of ROM and RAM.

• Random Access Memory (RAM): The primary storage is referred to as random access memory (RAM)
because it is possible to randomly select and use any location of the memory directly store and retrieve
data. It takes same time to any address of the memory as the �rst address. It is also called read/write
memory. The storage of data and instructions inside the primary storage is temporary. It disappears
from RAM as soon as the power to the computer is switched o�.

• Read Only Memory (ROM): There is another memory in computer, which is called Read Only Memory
(ROM). Again it is the ICs inside the PC that form the ROM. The storage of program and data
in the ROM is permanent. The ROM stores some standard processing programs supplied by the
manufacturers to operate the personal computer. The ROM can only be read by the CPU but it
cannot be changed. The basic input/output program is stored in the ROM that examines and initializes
various equipment attached to the PC when the switch is made ON.

External Memory
The external memory holds information too large for storage in main memory. Information on external

memory can only be accessed by the CPU if it is �rst transferred to main memory. External memory is slow
and virtually unlimited in capacity. It retains information when the computer is switched o� and is used to
keep a permanent copy of programs and data.

Hard Disk: is made of magnetic material. Magnetic disks used in computer are made on the same
principle. It rotates with very high speed inside the computer drive. Data is stored on both the surface of
the disk. Magnetic disks are most popular for direct access storage device. Each disk consists of a number
of invisible concentric circles called tracks. Information is recorded on tracks of a disk surface in the form of
tiny magnetic spots. The presence of a magnetic spot represents one bit and its absence represents zero bit.
The information stored in a disk can be read many times without a�ecting the stored data. So the reading
operation is non-destructive. But if you want to write a new data, then the existing data is erased from the
disk and new data is recorded. The capacity of a hard disk is possibly 20 GB, 30 GB, 40 GB, 60 GB or
more.

Floppy Disk: It is similar to magnetic disk discussed above. They are 5.25 inch or 3.5 inch in diameter.
They come in single or double density and recorded on one or both surface of the diskette. The capacity of
a 5.25-inch �oppy is 1.2 mega bytes whereas for 3.5 inch �oppy it is 1.44 mega bytes. The �oppy is a low
cost device particularly suitable for personal computer system.

Optical Disk:With every new application and software (includes sounds, images and videos) there is
greater demand for memory capacity. It is the necessity to store large volume of data that has led to the

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 6

development of optical disk storage medium. There are two commonly used categories of optical disks: CD
with the approximate capacity of 700MB and DVD with the approximate capacity of 4.7GB

Memory Stick (Flash card, �ash drive) a removable �ash memory card format, with 128MB, 256 MB,
512 MB, 1 GB, 2 GB , 4 GB or more capacities

Figure 3: Some types of auxiliary memory

1.4 Input-Output Devices

A computer is only useful when it is able to communicate with the external environment. When you work
with the computer you feed your data and instructions through some devices to the computer. These devices
are called Input devices. Similarly the computer after processing, gives output through other devices called
output devices.

Common input and output devices are: Speakers, Mouse, Scanner, Printer,Joystick, CD-ROM, Keyboard,
Microphone, DVD, Floppy drive, Hard drive, Magnetic tape, and Monitor. Some devices are capable of both
input and output.

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 7

Figure 4: Typical input- output devices

Input Devices
Input devices are necessary to convert our information or data in to a form which can be understood by

the computer. A good input device should provide timely, accurate and useful data to the main memory of
the computer for processing followings are the most useful input devices.

Keyboard: - This is the standard input device attached to all computers. The layout of keyboard is just
like the traditional typewriter. It also contains some extra command keys and function keys. It contains
a total of 101 to 104 keys. You must press correct combination of keys to input data. The computer
can recognize the electrical signals corresponding to the correct key combination and processing is done
accordingly.

Mouse: - Mouse is an input device that is used with your personal computer. It rolls on a small ball
and has two or three buttons on the top.When you roll the mouse across a �at surface the screen censors
the mouse in the direction of mouse movement. The cursor moves very fast with mouse giving you more
freedom to work in any direction. It is easier and faster to move through a mouse.

Scanner: The keyboard can input only text through keys provided in it. If we want to input a picture
the keyboard cannot do that. Scanner is an optical device that can input any graphical matter and display
it back.

Output Devices
Monitor: The most popular input/output device is the monitor. A Keyboard is used to input data and

Monitor is used to display the input data and to receive massages from the computer. A monitor has its
own box which is separated from the main computer system and is connected to the computer by cable. It
can be color or monochrome. It is controlled by an output device called a graphics card. Displayable area

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 8

measured in dots per inch, dots are often referred to as pixels. Standard resolution is 640 by 480. Many
cards support resolution of 1280 by 1024 or better. Number of colors supported varies from 16 to billions

Printer: It is an important output device which can be used to get a printed copy of the processed text
or result on paper. There are di�erent types of printers that are designed for di�erent types of applications.

1.5 Buses

Bus is a subsystem that transfers data or power between computer components inside a computer or between
computers. Bus can logically connect several peripherals over the same set of wires. Each bus de�nes its set
of connectors to physically plug devices, cards or cables together. The buses are categorized depending on
their tasks:

• The data bus transfers actual data.
• The address bus transfers information about where the data should go.
• The control bus carries signals that report the status of various devices.

2 Computer Software

2.1 Data and Algorithms

There are many steps involved in writing a computer program to solve a given problem. The steps go form
problem formulation and speci�cation, to design of the solution, to implementation, testing and documen-
tation, and evaluation the solution.

Once we have a suitable mathematical model for our problem, we attempt to �nd a solution in term of
that model. Our initial goal is to �nd a solution in the form of an algorithm. So what is an algorithm?

Algorithm is a �nite sequence of instructions each of which has a clear meaning and can be performed
with a �nite amount of e�ort in a �nite length of time.

How do you represent an algorithm? The most obvious representation: source code of a programming
language. However, writing source code before you fully understand an algorithm often leads to di�cult-to-
�nd bugs. So, algorithms may be presented ...

1. In words
To present the algorithm in words we may describe the tasks step by step.
2.As a �owchart
A familiar technique for overcoming those bugs involves �owcharts.
A �owchart is a visual representation of an algorithm's control �ow. That representation illustrates

statements that need to execute, decisions that need to be made, logic �ow (for iteration and other purposes),
and terminals that indicate start and end points.

To present that visual representation, a �owchart uses various symbols, which Figure 3.5.shows.

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 9

Figure 5: Flowchart symbol for statements, decisions, logic �ows, etc.

This review was essential because we will be using these building blocks quite often today.
3. In pseudocode
Pseudocode (derived from pseudo and code) is a compact and informal high-level description of a com-

puter programming algorithm that uses the structural conventions of programming languages, but omits
detailed subroutines, variable declarations or language-speci�c syntax. The programming language is aug-
mented with natural language descriptions of the details, where convenient, or with compact mathematical
notation.

Example
Present the algorithm of converting an integer from decimal to binary
a. By words
Step 1: Let x is the decimal integer you want to convert and let k=1
Step 2 : Divide x by 2, saving the quotient as Q, and the remainder (in binary) as Rk

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 10

Step 3 : If Q is not zero, let X=Q, and go back to step 2. Otherwise go to step 4.
Step 4 : Assume step 1-3 were repeated n times. Arrange the remainders as string for digitRnRn−1...R3R2R1.
b. As a �owchart

Figure 6: Flowchart of the algorithm of converting an integer from decimal to binary

c. By pseudocode

BEGIN

input x.

y=''''

remainder=0,

while (x>0)

begin

quotient=x/2

remainder=x mod 2

y=conc(remainder,y)

x=quotient

end

print y

END.

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 11

Example
Bubble Sort
Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through the list to be sorted,

comparing two items at a time and swapping them if they are in the wrong order. The pass through the list
is repeated until no swaps are needed, which indicates that the list is sorted.

5 1 4 2 8 - unsorted array
1 4 2 5 8 - after one pass
1 2 4 5 8 - sorted array
The algorithm gets its name from the way smaller elements "bubble" to the top (i.e. the beginning) of

the list via the swaps.Because it only uses comparisons to operate on elements, it is a comparison sort. This
is the easiest comparison sort to implement.

Here are the presentations of bubble sort algorithm
a. By words
Step 1: Get the length of the list : N and the list: list[1],list[2],. . .,list[N]
Step 2: M ← N.
Step 3: If M < 2 then print the list, stop.
Step 4: M ← M � 1, i ← 0.
Step 5: Increase i by 1
Step 6: If i > M then go to step 3.
Step 7: If list[i] > list[i+1] swap list[i] and list[i+1]
Step 8: Go to step 5.
b. As a �ow chart

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 12

Figure 7: Flowchart of bubble sort algorithm

c. In pseudocode
A simple way to express bubble sort in pseudocode is as follows:

BEGIN get length (list) and list's elements

for each M in length(list) down to 2 do:

for each i in 1 to M-1 do:

if list[i] > list[i+1] then

swap(list[i+1], list[i])

end if

end for

end for

end procedure

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 13

Comparing the three methods,especially pseudocode and �owchart we realized :
Pros and Cons of Flowcharts
In fact, �owcharts are not very useful.The process of writing an algorithm in the form of a �owchart is

just too cumbersome, and then converting this graphical form into code is not straight forward
However, there is another kind of �owcharts � called Structured Flowcharts � that may be better suited

for software developers.
The good thing about �owcharts is that their symbols are quite intuitive and almost universally under-

stood. Their graphical nature makes the process of explaining an algorithm to one's peers quite straightfor-
ward.

Pros and Cons of Pseudocode
Pseudocode are quite suitable for software development as it is closer in form to real code.One can write

the pseudocode, then use it as a starting point or outline for writing real code.
Many developers write the pseudocode �rst and then incrementally comment each line out while convert-

ing that line into real code.Pseudocode can be constructed quite quickly as compared with a �owchart.
Unlike �owcharts, no standard rules exist for writing pseudocode
To design an algorithm, the following characteristics are very

• Exactness
• E�ectiveness
• Guaranteed termination
• Generality

The concept of structured programming says that any programming logic problem can be solved using an
appropriate combination of only three programming structures,

1.Sequence: a sequence of instructions that are executed in the precise order they are written in

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 14

Figure 8

2. Conditional : Select between alternate courses of action depending upon the evaluation of a condition

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 15

Figure 9

Loops: Loop through a set of statements as long as a condition is true

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 16

Figure 10

2.2 Programs and Programming Languages

Programs
A computer program is an algorithm written for a computer in a special programming language.
Programming languages
A programming language is an arti�cial language that can be used to control the behavior of a machine,

particularly a computer. It is de�ned through the use of syntactic and semantic rules, to determine structure
and meaning respectively.

Programming languages are used to facilitate communication about the task of organizing and manipu-
lating information, and to express algorithms precisely.

There are large number of programming language in use. We can identify three type of programming
languages : machine languages, assembly languages, high-level languages.

Machine Languages
Machine code or machine language is a system of instructions and data directly executed by a computer's

central processing unit. Machine code is the lowest-level of abstraction for representing a computer pro-
gram.Instructions are patterns of bits with di�erent patterns corresponding to di�erent commands to the
machine. Machine code has several signi�cant disadvantages : very di�cult for a human to read and write,
a program written on one computer cannot run on a di�erent computer, so it cannot be used to write large
program or program intended to run on di�erent machines.

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 17

Assembly Languages
An assembly language is a low-level language for programming computers. It implements a symbolic

representation of the numeric machine codes and other constants needed to program a particular CPU
architecture.

This representation is usually de�ned by the hardware manufacturer, and is based on abbreviations
(called mnemonics) that help the programmer remember individual instructions, registers, etc. An assembly
language is thus speci�c to a certain physical or virtual computer architecture

A utility program called an assembler, is used to translate assembly language statements into the target
computer's machine code.

Although assembly is more friendly than machine code, use of assembly o�er several disadvantages, for
instance, each type of computer has its own assembly language or programming assembly requires much time
and e�ort.

Hence, assembly language is not use to write large programs. However, there are some computer appli-
cation, such as in writing program that control peripherals, assembly is still a necessity.

High-level languages
A high-level programming language is a programming language that, may be more abstract, easier to

use, or more portable across platforms.
Examples: Pascal, C, Visual Basic, SQL,
Such languages often abstract away CPU operations such as memory access models and management of

scope.These languages have been implemented by translating to machine languages.
There are two types of translators

• Compiler is a program that translate source code from a high-level programming language to a lower
level language (e.g., assembly language or machine language)

• Interpreter is a program that translates and executes source language statements one line at a time.

Figure 11 below shows the process of solving problem with computers

Figure 11: Steps in software development

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 18

Domain Analysis
Often the �rst step in attempting to design a new piece of software, whether it be an addition to an

existing software, a new application, a new subsystem or a whole new system, is, what is generally referred
to as "Domain Analysis". The more knowledgeable they are about the domain already, the less the work
required. Another objective of this work is to make the analysts who will later try to elicit and gather the
requirements from the area experts or professionals, speak with them in the domain's own terminology and
to better understand what is being said by these people. Otherwise they will not be taken seriously. So, this
phase is an important prelude to extracting and gathering the requirements.

Software Elements Analysis
The most important task in creating a software product is extracting the requirements. Customers typi-

cally know what they want, but not what software should do, while incomplete, ambiguous or contradictory
requirements are recognized by skilled and experienced software engineers. Frequently demonstrating live
code may help reduce the risk that the requirements are incorrect.

Speci�cation
Speci�cation is the task of precisely describing the software to be written, possibly in a rigorous way. In

practice, most successful speci�cations are written to understand and �ne-tune applications that were already
well-developed, although safety-critical software systems are often carefully speci�ed prior to application
development. Speci�cations are most important for external interfaces that must remain stable.

Software architecture
The architecture of a software system refers to an abstract representation of that system. Architecture

is concerned with making sure the software system will meet the requirements of the product, as well as
ensuring that future requirements can be addressed. The architecture step also addresses interfaces between
the software system and other software products, as well as the underlying hardware or the host operating
system.

Implementation (or coding)
Reducing a design to code may be the most obvious part of the software engineering job, but it is not

necessarily the largest portion.
Testing
Testing of parts of software, especially where code by two di�erent engineers must work together, falls to

the software engineer.
Documentation
An important (and often overlooked) task is documenting the internal design of software for the purpose

of future maintenance and enhancement. Documentation is most important for external interfaces.

2.3 Classi�cation of Computer Software

The software is divided to System Software and Application Software with each having several sub levels.
System software is the low �level software required to manage computer resources and support the

production or execution of application program.
Application software is software program that perform a speci�c function directly for the end user.
System Software includes

• Operating Systems software
• Network Software : network management software, server software, security and encryption software,

etc.
• Database management software
• Development tools and programming language software: software testing tools and testing software,

program development tools, programming languages software
• Etc.

Application Software includes

http://cnx.org/content/m27733/1.1/

Connexions module: m27733 19

• General business productivity applications : software program that perform a speci�c function di-
rectly for the end user, examples include : o�ce applications, word processors, spreadsheet, project
management system ,etc.

• Home use applications : software used in the home for entertainment, reference or educational purposes,
examples include games, home education etc.

• Cross-industry application software : software that is designed to perform and/or manage a speci�c
business function or process that is not unique to a particular industry, examples include professional
accounting software, human resources management, Geographic Information Systems (GIS) software,
etc.

• Vertical market application software : software that perform a wide range of business functions for a
speci�c industry such as manufacturing, retail, healthcare , engineering, restaurant, etc.

• Utilities software : a small program that performs a very speci�c task. Examples include : compression
programs, antivirus, search engines, font, �le viewers, voice recognition software, etc.

http://cnx.org/content/m27733/1.1/

